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Foreword

This second edition ofGreen Techniques for Organic Synthesis and Medicinal Chemistry by Cue and Zhang is
a collection of the cutting-edge research and intellectual perspectives from the leaders in the feld of chem-
istry in both industry and academia. It refects the exponential growth that is taking place in the chemical
enterprise around the world and the ways that elegance in chemistry is being defned. Within the context of
their time, the giants of synthetic chemistry of the past would undertake and accomplish herculean feats of
molecular manipulation that were previously thought impossible. While those feats need to be recognized for
the historical advances that they were, it is equally true that we have evolved to see their limitations in the
current day. Many of the techniques that were developed were harsh, or toxic, or posed physical hazards, or
caused inordinate waste generation. In other words, they caused a number of new problems while they were
solving the problem that they were focused upon. Two steps forward and one (or more) steps back.
This book more than anything else shows the elevation in thinking that has allowed the feld to recognize

that a systems perspective is essential to avoid unintended consequences. More importantly, a systems per-
spective is one of themost powerful drivers to genuine impactful innovation. Each of the topics covered in this
book demonstrates not merely an advance in the discovery, demonstration, and development of a molecule
or synthetic pathways, but also an advance in the design thinking behind the chemistry.
The topics in the book are as varied and diverse as the feld of green chemistry itself, which is a tribute to the

vision of the editors. When the area of catalysis is addressed it covers new thinking in terms aqueous catalysis
in Chapter 12, “Asymmetric Catalysis in Aqueous Media” by Kartik C. Bhowmick and Tanmoy Chanda that
combines the perspective on catalyst development with the insights of how the properties of water can be
used to facilitate stereo-selectivity. The founder of fuorous solvents, István T. Horváth (along with co-author
László T. Mika), brings his decades long perspectives on catalysis to bear Chapter 10, “Fluorous Catalysis.”
The advantages of biocatalysis to the goals of industrial green chemistry are addressed in Chapter 8 by James
Lalonde fromCodexis and Chapter 9 by Luo and Zhang portray the leading edge of asymmetric and C-H bond
catalysis respectively.
Just as the chapters on catalysis look at the broader systems that enable and empower green catalysts, the

section on synthetic techniques takes a similar approach. Alternative approaches to chemical media and syn-
thetic processes is exemplifed through the chapters on solvent-free synthesis, microwave synthesis, ultrasonic
synthesis byMack, Van der Eycken, and Stefani, respectively and demonstrate the need for demonstration and
scale up of these innovative approaches to synthesis. Chapters fromYi, Rogers, Shamshina, Kitchens, Soh, and
Sun highlight the combining of the thinking of traditionalmethodologies with solvent systems and engineered
systems in the chapters. Too often synthetic methodologies have been tossed over the proverbial transom to
the process engineers, which has brought about frustration, delays, cost, and sub-optimal results. These chap-
ters are indicative of the thinking in green chemistry and green engineering that is taking place to displace
those old inefciencies.
The chapters that focus on real-world examples from the pharmaceutical sector provides current perspec-

tives on the critical topics ranging across processes,metrics, regulations, and industrial collaborations in green
chemistry. This section has particular value for those wishing to know what the essential elements are for any
individual or company wishing to engage or advance green chemistry within the pharmaceutical sector.



xxii Foreword

Of all of the innovative parts of the book, perhaps the most intellectually challenging is Part I, which com-
bines thinkers from across the spectrum of industry, academia, and not-for-proft institutions to discuss the
grand state of afairs in green chemistry, including a chapter by Stohl andWarner who illustrate green chem-
istry innovation with examples of their research into non-covalent derivatives. The remaining chapters survey
the feld from regulations to formulations to analysis and provide a defnitive overview for the reader.
This book gives the readers a glimpse at the horizons that can be accomplished through green chemistry

thinking and innovation. By moving from a focus on efciency, to efectiveness, toward the ideal, the feld of
green chemistry has evolved over 25 years and that evolution is refected in the chapters. The editors of this
volume, Cue and Zhang, have combined the broadest perspectives of green chemistry with themost insightful
scientists in the feld and produced a volume that represents the frontier of the green chemistry enterprise
in 2017.

Paul T. Anastas
New Haven, Connecticut, USA
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Preface

We are pleased to present the second edition ofGreen Techniques for Organic Synthesis andMedicinal Chem-
istry. According to a Web of Science search by the end of 2016, more than 40% of all the papers in the feld
of green chemistry have appeared since our frst edition was published in 2012, documenting the continuing
explosive growth of green chemistry. In this new edition we have presented topics in chapters that refect
the breadth and depth of this growing feld of chemistry. This 24-chapter book has 55 contributing authors,
including 20 who contributed chapters to the frst edition and 35 who are new contributors to this edition,
and who represent academia and industry from around the world. Of the 24 chapters, 9 introduce subjects
that are new to this edition and all of them contain a major focus on the science that has emerged in recent
years. We sincerely thank all our authors for their excellent and dedicated work to complete this project. We
acknowledge Ms. Sarah Higginbotham from Wiley for inviting us to contribute this new edition and for her
help with the preparation and review of our book proposal. We thank Ms. Elsie Merlin, Ms. Rebecca Ralf,
Ms. Emma Strickland, Tricia Lawrence, and Shalini Sharma at diferent stages of this project including com-
municating with authors, typesetting, proofreading and cover design, and Dr. Paul Anastas for contributing
the foreword. Each of them helped to make this book better than it would otherwise have been. Finally, and
most importantly, we thank our family members. A project like this always seems to demand more time and
a higher priority than we realize and often this time is taken from them. For their patience and understanding
we are grateful.
Wei Zhang is a faculty member and BerkeleyW. Cue is a 1969 alumnus and adjunct professor in the Chem-

istry Department of the University of Massachusetts-Boston (UMB). UMB has a strong tradition in green
chemistry and many outstanding alumni including Dr. Paul Anastas, Dr. Nicholas Anastas, Dr. Amy Cannon,
and Dr. John Warner. UMB established the frst PhD program in green chemistry and the Center for Green
Chemistry. So far over 20 students have been awarded their PhD degrees in this feld. In 2015, UMB hosted
the third Global Green Chemistry Centers (G2C2) conference in its newly opened Integrated Science Center
(ISC). In 2016, the Green Chemistry Centers of Yale University and UMB held a joint symposium celebrat-
ing UMB alumni’s green chemistry achievements. We sincerely thank the UMB Chemistry department, the
College of Science andMathematics, and the university for providing continuous support to green chemistry-
related activities, including the publication of this book.

Wei Zhang
Boston, Massachusetts, USA

Berkeley W. Cue
Nottingham, New Hampshire, USA

April 2017
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

Green Chemistry Metrics
Frank Roschangar1 and Juan Colberg2

1 Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefeld, Connecticut, USA
2 Pfzer Global Research and Development, Pfzer Inc., Groton, Connecticut, USA

. Business Case

Green chemistry is an integral, strategic component for pharmaceutical frms to inspire development of drug
manufacturing processes with optimal environmental impact, process safety, and energy consumption, all
of which bring about improved economics. Manufacturing contributes a substantial part of industry expen-
ditures that has been estimated at one-third of total costs to one-third of total sales, or about $200 billion
worldwide in 2008 [1, 2]. This fgure includes about 10 billion kg of annual drug manufacturing waste treat-
ment with costs of $20 billion [3]. Therefore, if efectively utilized, green chemistry represents a signifcant
opportunity for industry to increase drug development and manufacturing efciencies that could translate to
trillions of dollars in social value for the public health consumer surplus [4]. This is precisely the reason why
industry should optimally utilize green chemistry. In this context, metrics become vital as a refection of cor-
porate priority, in line with the provenmanagement adage “you can’t manage what you don’t measure.” Unless
improvements are defned, quantifed, and measured, we cannot establish clear objectives that allow us to
estimate manufacturing improvements. We must, therefore, measure green chemistry by carefully choosing
metrics that matter. Ideally, those selected metrics are standardized and aligned within the industry, and also
leveraged within the frms with key stakeholders, namely company leadership, technical staf, and suppliers,
thereby promoting a culture of continuous ambition and improvement. It was not until 23 years after intro-
duction of the E factor [5] that the frst standardized and unifed green manufacturing goal metric became
available that will be detailed vide infra [6, 7].

. Historical Context

The origins of metrics date back to 1956 when Nobel laureate Woodward questioned how to create the best
possible synthesis, and invented the concept of synthetic design [8]: “synthesis must always be carried out
by a plan, and the synthetic frontier can be defned only in terms of the degree to which realistic planning
is possible, utilizing all of the intellectual and physical tools available.” In 1989, Corey leap-frogged the feld
of synthetic design by introduction of retrosynthesis methodology, in which the chemist starts planning
from the product backward via the most efcient bond dissection to arrive at simple and readily available
raw materials [9]. For these contributions, he was awarded the 1990 Nobel Prize in Chemistry. The initial
considerations for environment in synthetic planning, and thus the frst environmental green chemistry
metrics, can be traced to Trost and Sheldon who went beyond synthesis design and assessed efciency
through Atom Economy (AE) [10] and Environmental impact factor (E factor) [11] in 1991 and 1992,

Green Techniques for Organic Synthesis and Medicinal Chemistry, Second Edition. Edited by Wei Zhang and Berkeley W. Cue.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
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Table . E factors, waste and process complexity across chemical industries.

Industry Segment
(Examples)

Annual Product
Tonnage

E-Factor (kg waste/
kg product)

Total Annual
Waste Tonnage No. of Steps

Years of
Development

Petrochemicals
(Solvents, Detergents)

1,000,000–
100,000,000

∼0.1 10,000,000 “Separations” 100+

Bulk Chemicals
(Plastics, Polymers)

10,000–
1,000,000

<1–5 5,000,000 1–2 10–50

Fine Chemicals
(Coatings, Electronic
Parts, Pharmaceutical
Raw Materials)

100–10,000 5–>50 500,000 3–4 4–7

Pharmaceuticals
(Antibiotics, Drugs,
Vaccines)

10–1,000 25–>100 100,000 6+ 3–5

respectively, with the implied goal to consider waste as a criterion for molecular design and thereby minimize
it. AE measures what proportion of the reactants becomes part of the product, and as such addresses a
shortcoming of chemical yield (CY). For example, we can have a step with 100% CY that produces more waste
than product weight, as was the case with the key step of the frst commercial process of phenol via pyrolysis
of sodium benzenesulfonate that was developed in Germany in the 1890s (Equation 1.1). Trost received the
Presidential Green Chemistry Challenge 1998 Academic Award for development of the AE concept [12].
Equation 1.1 Key step of commercial phenol process.

PhSO3Na + 2 NaOH → PhONa + Na2SO3 +H2O
MW 180.15 40.00 116.09 126.04 18.02

Unlike AE, the E factor considers CY and selectivity of a process by measuring the amount of waste, exclud-
ing water, that is co-produced with 1 kg of the target molecule. A high E factor indicates more waste and
greater negative environmental impact. The ideal E factor is 0. Typical E factors for various chemical indus-
tries were estimated by Sheldon in 1997 and indicate that pharmaceuticals face substantially elevated waste
burden compared to the allied chemical industries (Table 1.1) [13].
The primary cause for the high E factors of pharmaceutical manufacturing is the greater molecular com-

plexity of drugs and the resulting larger step number count to produce them. In addition, the industry faces
internal and external barriers thatmay obstruct optimalmanufacturing efciencies as summarized inTable 1.4
vide infra.

. Metrics, Awards, and Barriers

.. Mass-Based Metrics

Efciency and productivity metrics conceived after AE and E factor focused on the amount of generated
waste with respect to the product, and for simplicity, assumed that all waste had the same environmental
impact, independent of its nature. The ACS GCI PR compiled drug manufacturing waste data and showed
that solvents and water make up the majority, or 86% of waste for the processes studied, and should there-
fore be included in comprehensive waste analysis (Figure 1.1) [14, 19]. Thus, the Pharmaceutical Roundtable
consequently introduced the Process Mass Intensity (PMI) metric that does consider all materials used in the
process and workup, including water.
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Raw Materials,

8%

Other, 6%

Water, 28%

Solvents, 58%

Figure . Typical pharmaceutical drug manufacturing waste
composition.

For a comprehensive overview, we summarize the commonmass-based metrics and their consideration for
resources in Table 1.2.
From the above group of diverse green chemistry mass metrics, both E factor and PMI emerged as the most

utilized in industry. Recently, the complete E factor or cEF was introduced, combining the advantages of PMI
that is the inclusion of water and solvents in analysis, with E factor that is step mass balance, as a well-suited
metric formulti-stepmanufacturing process analysis [6].
However, while mass-based metrics can measure process improvements and thereby aid route design to a

specifc drug target, they do not allow for comparison of manufacturing processes between diferent drugs,
and thus by themselves cannot deliver a standardized green process goal.

Table . Mass-based environmental process waste metrics.

Metric Abbreviation Formula
Optimum
Value Inventor (Year)

Resource Efciency

Chemical Yield CY m(Product) ×MW (Raw Material) × 100
m(Raw Material) ×MW (Product)

100% –

Atom
Economy

AE MW (Product) × 100∑
MW (Raw Materials) +

∑
MW (Reagents)

100% Trost (1991) [10]

Environmental
Impact Factor

E factor
∑

m(Input Materials excl.Water) −m(Product)
m(Product)

0
kg
kg

Sheldon (1992) [11]

Efective Mass
Yield

EMY m(Product) × 100∑
m(Raw Materials) +

∑
m(Reagents)

100% Hudlicky (1999)
[15]

Mass Intensity MI
∑

m(Input Materials excl.Water)
m(Product)

1
kg
kg

Constable/Curzons
(2001) [16]

Reaction Mass
Efciency

RME m(Product) × 100∑
m(Raw Materials)

100% Constable/Curzons
(2001) [16]

(continued)
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Table . (Continued)

Metric Abbreviation Formula
Optimum
Value Inventor (Year)

Carbon
Efciency

CE m(Carbon in Product) × 100∑
m(Carbon in Raw Materials)

100% Constable/Curzons
(2001) [16]

Mass
Productivity

MP m(Product) × 100∑
m(Input Materials excl.Water)

= 100
MI

100% Constable/Curzons
(2002) [17]

Process Mass
Efciency

PME m(Product) × 100∑
m(Input Materials incl.Water)

= 100
PMI

100% Hanson (2006) [18]

Process Mass
Intensity

PMI
∑

m(Input Materials incl.Water)
m(Product)

1
kg
kg

Constable/Curzons/
ACS GCI PR
(2007) [19]

Reaction Mass
Intensity

RMI
∑

m(Raw Materials) +
∑

m(Reagents)
m(Product)

= 1
EMY

1
kg
kg

Song/Senanayake
(2012) [20]

Optimum
Efciency

OE RME × 100
AE

100% Clark (2015) [21]

Simple E factor sEF
∑

m(Raw Materials) +
∑

m(Reagents) −m(Product)
m(Product)
= RMI − 1

0
kg
kg

Roschangar/
Senanayake/
Sheldon
(2015) [6]

Complete E
factor

cEF
∑

m(Input Materials incl.Water) −m(Product)
m(Product)
= PMI − 1

0
kg
kg

Roschangar/
Senanayake/
Sheldon (2015) [6]

Solvents

Solvent
Intensity

SI
∑

m(Solvents excl.Water)
m(Product)

0
kg
kg

Constable/Curzons
(2001) [16]

Water Intensity WI
∑

m(Water)
m(Product)

0
kg
kg

Jiménez-González/
Curzons (2001) [22]

Renewables

Renewables
Intensity

RI
∑

m(Renewably Derivable Input Materials)
m(Product)

1
kg
kg

Jiménez-González/
Constable/Ponder
(2012) [24]

Renewables
Percentage

RP RI × 100
PMI

100% Clark (2015) [21]

Equipment Utilization

Space Time
Yield

STY m(Product)
Nominal Reactor Volume × Reactor Time

′max′
kg
m3h

–

Volume Time
Output

VTO Nominal Reactor Volume × Reactor Time
m(Product)

= 1
STY

′min′ m
3h
kg

Dach/Roschangar/
Senanayake (2012)
[23]

.. Life-Cycle Assessment

Accurately measuring the greenness of a manufacturing process unquestionably goes beyond quantifying co-
produced waste, and includes assessing sustainability of process inputs such as metals, reagents, and solvents,
evaluating overall environmental impact including eco-toxicity and carbon footprint, energy consumption,
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Figure . Comprehensive green metrics categories for life cycle
assessment.

as well as occupational health and risk factors, all of which are integral part of the comprehensive life-cycle
assessment (LCA) (Figure 1.2) [24, 25].
LCA methodology encompasses cradle-to-grave impact analysis starting from sources and upstream

processes for process inputs, the processes themselves to manufacture intermediates and the drug, including
equipment cleaning and waste handling, all the way to pharmaceutical manufacturing, packaging, and
eventually drug disposal and recycling over the useful life of the drug. However, there are several hurdles
to overcome with LCA [26]. A signifcant challenge is the lack of life-cycle inventory (LCI) input data and
standardization [27], as well as the difculty to allocate energy consumption to a particular process within
pharmaceutical multi-purpose plants. A further barrier is that analysis remains time-consuming, and thereby
inhibits widespread use, particular during early phases of drug development where LCA is expected to have
the biggest impact during the synthesis design phase, despite eforts to simplify the methodology via fast
life-cycle assessment of synthetic chemistry (FLASC) tool [28]. Recently, a more practical model combining
PMI methodology with LCA was demonstrated for the Viagra process and used literature and patent data to
estimate missing LCI [29].

.. Green Analytical Chemistry (GAC)

The GAC concept emerged from the feld of green chemistry [30, 31] with intent to motivate development
of analytical methods that minimize solvents and hazards, and maximize operator safety [32]. This could be
achieved by application of techniques such as sample and deviceminiaturization, solvent-less extractions, and
use of greener solvents [33, 34]. Eforts have been made to develop GAC metrics that include NEMI labeling
as pictographic indication of hazards and waste [35], analytical method volume intensity (AVMI) as measure
of total solvent consumption of HPLC methods [36], and the analytical eco-scale scoring system [37]. The 12
principles of GAC provide guidance for green analytics [38].

.. Awards

An important element to move toward greener drugs is recognition of scientists by industry and government.
Awards within companies create a sense of employee involvement and inspire staf to adapt greener thinking
patterns in everyday work routines, and also demonstrate the frm’s commitment to green chemistry. Recog-
nition by government is even more visible and impactful. The most prestigious government recognition for
industry is the Presidential Green Chemistry Challenge Awards (PGCCA) awards by the U.S. Environmental
Agency (EPA) [39]. The PGCCA is the only award issued by the president of theUnited States that honorswork
in the feld of chemistry! PGCCA awardees and winners of the UK Institute of Chemical Engineers (IChemE)
from the pharmaceutical industry, along with the applied green chemistry principles [40] and metrics, are
summarized in Table 1.3.
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Table . Green Chemistry Challenge Award winners in pharmaceutical drug manufacturing.

Year Awardee Category/Summary Issuer Green chemistry principles

2012 Codexis Prof. Y.
Tang (UCLA)

Greener synthetic pathways/efcient
biocatalytic process to manufacture
Simvastatin/Zocor

PGCCA Replaced multistep synthesis with
process starting from natural
product using an engineered
enzyme and low-cost feedstock

2010 Merck Codexis Greener reaction conditions/greener
manufacturing of Sitagliptin/Januvia
by an evolved transaminase

PGCCA Replaced asymmetric catalytic
high-pressure hydrogenation with
transaminase enzyme, eliminated all
metals and chiral purifcation step

2006 Merck Greener synthetic pathways/novel
green synthesis for β-amino acids to
produce Januvia

PGCCA Increase CY, innovative asymmetric
catalytic hydrogenation, reduces
waste by 80%

2006 Codexis Greener reaction conditions/
directed evolution of three
biocatalysts to produce the key
chiral building block for
Atorvastatin/Lipitor

PGCCA New genetic method for “designer
enzymes,” waste reduction, less
processing equipment and fewer
unit operations, increase CY,
improve worker safety

2006 Pfzer Excellence in green chemistry and
engineering/revised Lyrica synthesis

IChemE Waste reduction via an enzymatic
process, carrying out all reaction
steps in water

2005 Merck Greener synthetic pathways/
redesigned, efcient synthesis of
Aprepitant/Emend

PGCCA Synthetic convergence, increase AE,
feedstock raw material

2004 Bristol-Myers
Squibb

Greener synthetic pathways/
development of a green synthesis for
Paclitaxel/Taxol manufacture via
plant cell fermentation and
extraction

PGCCA Plant cell fermentation instead of
plant extraction to reduce biomass
waste

2003 Pfzer Crystal Faraday Award for green
chemical technology/process
redesign of Viagra/Sildenafl

IChemE Setting a new benchmarking
standard for minimizing solvent use

2002 Pfzer Greener synthetic pathways/green
chemistry in the redesign of the
Sertraline/Zoloft process

PGCCA Increase CY, reduction of raw
material, energy, and water use,
increase of worker safety by
combining three steps into one

2000 Roche Colorado
(now Corden
Pharma)

Greener synthetic pathways/efcient
process for the production of
Ganciclovir/Cytovene

PGCCA Increase CY, doubling production
throughput, waste reduction,
non-toxic and non-hazardous
feedstock

1999 Lilly Greener synthetic pathways/
practical application of a biocatalyst
in pharmaceutical manufacturing
for anticonvulsant drug candidate

PGCCA Waste reduction, use of biocatalytic
yeast reduction to replace chemical
process, elimination of chromium
waste

1997 BHC (now
BASF)

Greener synthetic pathways/
Ibuprofen process

PGCCA Step reduction from six to three,
recovery and recycling of a waste
by-product, elimination of aqueous
salt wastes, increase AE
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.. Barriers

Despite having a strong business case alongside a wide selection of green chemistry metrics, signifcant hur-
dles to their broad adoption remain [6, 41–43]. They can be categorized into barriers directly addressable by
industry, and into opportunities government could help tackle, as summarized in Table 1.4.
The opportunities can be realized with a standardized, unifed, and quantifable metric to assess the green-

ness of any drug manufacturing process that now has become available [6, 7].

Table . Barriers to adoption of green chemistry metrics in industry.

Stakeholder Barrier Potential Impact Opportunity

Industry Metrics are not harmonized Difculty evaluating greenness
of processes across industry

Unify metrics and make
methodology simple

Analysis starting points are
inconsistent

Lower credibility of analysis
results

Defne analysis starting points

Complexities of drug molecule
are neglected

Unfair green process targets Consider manufacturing
complexities

Absence of an objective/smart
green manufacturing process
goal

Irrelevance of green chemistry
measurements to scientists

Establish fair green chemistry
manufacturing goal

Government Regulatory requirements for
late-phase and commercial
process changes

Firms do not commercialize
the greenest process

Ease regulations on green
process changes

Limited patent life and high
Research & Development costs
(high project attrition)

Firms do not commercialize
the greenest process

Fast-track approval for drugs
made by green manufacturing
processes

Absence of avenues (metrics)
to showcase drugs
manufactured via green
processes

Firms do not commercialize
the greenest process

(i) Allow “green labeling” of
drugs.

(ii) Enhance visibility and
number of green drug
manufacturing award
programs

Absence of intrinsic waste data
for catalog chemicals

Intrinsic waste of raw
materials, reagents, process
aids, catalysts, and solvents is
excluded from analysis

Regulate labeling requirements
to show intrinsic waste of
catalog chemicals to help guide
green process design

. Metrics Unification Via Green Aspiration Level

Green chemists from Boehringer Ingelheim, Pfzer, Novartis, GlaxoSmithKline, Genentech (Roche), Eli Lilly,
Bristol-Myers Squibb, Merck, and Amgen, in collaboration with Prof. Sheldon, who is the inventor of the E
factor, recently made a strong push to unify green mass-based metrics in industry [7]. The cohort simpli-
fed and improved the original green aspiration level (GAL) methodology [6] to help overcome the afore-
mentioned industry barriers to green chemistry. By working through two of the leading green chemistry
industry consortia, the International Consortium for Innovation & Quality in Pharmaceutical Development
(IQ, https://iqconsortium.org/initiatives/working-groups/green-chemistry) and the ACS Green Chemistry
Institute Pharmaceutical Roundtable (ACS GCI PR, https://www.acs.org/content/acs/en/greenchemistry/
industry-business/pharmaceutical.html), they achieved support within those consortia to consider the GAL
a valuable tool to make optimal choices in green chemistry process design. We will review how the barriers

let &hbox {char '046}https://iqconsortium.org/initiatives/working-groups/green-chemistry
https://iqconsortium.org/initiatives/working-groups/green-chemistry
https://www.acs.org/content/acs/en/greenchemistry/industry-business/pharmaceutical.html
https://www.acs.org/content/acs/en/greenchemistry/industry-business/pharmaceutical.html



